Area operator and fixed area states in conformal field theories
نویسندگان
چکیده
The fixed area states are constructed by gravitational path integrals in previous studies.In this paper we show the dual of conformal field theories (CFTs).These CFT using spectrum decomposition reduced density matrix $\rho_A$ for a subsystem $A$. For 2 dimensional CFTs directly construct bulk metric, which is consistent with expected geometry states. arbitrary pure geometric state $|\psi\rangle$ any dimension also find consistency gravity R\'enyi entropy. We give relation parameters and boundary state. can be expanded as superposition Motivated this, propose an operator $\hat A^\psi$. eigenstate A^\psi$, associated eigenvalue related to entropy $A$ Ryu-Takayanagi formula expressed expectation value $\langle \psi| {\hat A}^\psi|\psi\rangle$ divided $4G$, where $G$ Newton constant. fluctuation suppressed semiclassical limit $G\to0$.
منابع مشابه
Boundary states in coset conformal field theories
We construct various boundary states in the coset conformal field theory G/H. The G/H theory admits the twisted boundary condition if the G theory has an outer automorphism of the horizontal subalgebra that induces an automor-phism of the H theory. By introducing the notion of the brane identification and the brane selection rule, we show that the twisted boundary states of the G/H theory can b...
متن کاملOperator Algebra of the SL(2) conformal field theories
Structure constants of Operator Algebras for the SL(2) degenerate conformal field theories are calculated. LANDAU-95-TMP-1 hep-th/9504082 Since the seminal work of Belavin, Polyakov and Zamolodchikov [1], there has been much progress in understanding two-dimensional conformal field theories. It is essential to compute the structure constants of Operator Algebra of such theories. In fact, it was...
متن کاملFinite Density States in Integrable Conformal Field Theories
We study states of large charge density in integrable conformal coset models. For the O(2) coset, we consider two different S-matrices, one corresponding to a Thirring mass perturbation and the other to the continuation to O(2+ ). The former leads to simplification in the conformal limit; the latter gives a more complicated description of the O(2) system, with a large zero mode sector in additi...
متن کاملExcited states in some simple perturbed conformal field theories
The method of analytic continuation is used to find exact integral equations for a selection of finite-volume energy levels for the non-unitary minimal models M 2,2N +3 perturbed by their ϕ 13 operators. The N =2 case is studied in particular detail. Along the way, we find a number of general results which should be relevant to the study of excited states in other models.
متن کاملNovel construction of boundary states in coset conformal field theories
We develop a systematic method to construct the boundary states in the coset conformal field theory G/H . Based on the relation of the G/H theory with the tensor product theory G×H , we give a map from the boundary states of G×H to those of G/H . Our map provides a large class of boundary states in coset theories, which include those not factorizable into the G and the H sectors. The action of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical review
سال: 2022
ISSN: ['0556-2813', '1538-4497', '1089-490X']
DOI: https://doi.org/10.1103/physrevd.106.l061903